79 research outputs found

    A sufficient condition for the subexponential asymptotics of GI/G/1-type Markov chains with queueing applications

    Full text link
    The main contribution of this paper is to present a new sufficient condition for the subexponential asymptotics of the stationary distribution of a GI/GI/1-type Markov chain without jumps from level "infinity" to level zero. For simplicity, we call such Markov chains {\it GI/GI/1-type Markov chains without disasters} because they are often used to analyze semi-Markovian queues without "disasters", which are negative customers who remove all the customers in the system (including themselves) on their arrivals. In this paper, we demonstrate the application of our main result to the stationary queue length distribution in the standard BMAP/GI/1 queue. Thus we obtain new asymptotic formulas and prove the existing formulas under weaker conditions than those in the literature. In addition, applying our main result to a single-server queue with Markovian arrivals and the (a,b)(a,b)-bulk-service rule (i.e., MAP/GI(a,b){\rm GI}^{(a,b)}/1 queue), we obatin a subexponential asymptotic formula for the stationary queue length distribution.Comment: Submitted for revie

    Tail asymptotics for cumulative processes sampled at heavy-tailed random times with applications to queueing models in Markovian environments

    Full text link
    This paper considers the tail asymptotics for a cumulative process {B(t);t0}\{B(t); t \ge 0\} sampled at a heavy-tailed random time TT. The main contribution of this paper is to establish several sufficient conditions for the asymptotic equality P(B(T)>bx)P(M(T)>bx)P(T>x){\sf P}(B(T) > bx) \sim {\sf P}(M(T) > bx) \sim {\sf P}(T>x) as xx \to \infty, where M(t)=sup0utB(u)M(t) = \sup_{0 \le u \le t}B(u) and bb is a certain positive constant. The main results of this paper can be used to obtain the subexponential asymptotics for various queueing models in Markovian environments. As an example, using the main results, we derive subexponential asymptotic formulas for the loss probability of a single-server finite-buffer queue with an on/off arrival process in a Markovian environment

    Error bounds for last-column-block-augmented truncations of block-structured Markov chains

    Full text link
    This paper discusses the error estimation of the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of block-structured Markov chains (BSMCs) in continuous time. We first derive upper bounds for the absolute difference between the time-averaged functionals of a BSMC and its LC-block-augmented truncation, under the assumption that the BSMC satisfies the general ff-modulated drift condition. We then establish computable bounds for a special case where the BSMC is exponentially ergodic. To derive such computable bounds for the general case, we propose a method that reduces BSMCs to be exponentially ergodic. We also apply the obtained bounds to level-dependent quasi-birth-and-death processes (LD-QBDs), and discuss the properties of the bounds through the numerical results on an M/M/ss retrial queue, which is a representative example of LD-QBDs. Finally, we present computable perturbation bounds for the stationary distribution vectors of BSMCs.Comment: This version has fixed the bugs for the positions of Figures 1 through

    Analysis and Computation of the Joint Queue Length Distribution in a FIFO Single-Server Queue with Multiple Batch Markovian Arrival Streams

    Full text link
    This paper considers a work-conserving FIFO single-server queue with multiple batch Markovian arrival streams governed by a continuous-time finite-state Markov chain. A particular feature of this queue is that service time distributions of customers may be different for different arrival streams. After briefly discussing the actual waiting time distributions of customers from respective arrival streams, we derive a formula for the vector generating function of the time-average joint queue length distribution in terms of the virtual waiting time distribution. Further assuming the discrete phase-type batch size distributions, we develop a numerically feasible procedure to compute the joint queue length distribution. Some numerical examples are provided also
    corecore